Leveling the playing field - a cheaper alternative to CRISPR-Cas9

By: Ethan¹, Justin², and Ajit³

- 1. MSc Student, University of Calgary
- 2. PhD Student, University of Calgary
- 3. PhD, Punjab Agricultural University, India

CRISPR-Cas systems are the leading method for gene editing

- Developed by Emmanuelle Charpentier and Jennifer Doudna in 2012
- CRISPR = Clustered Regularly Interspaced Short Palindromic Repeats
- Form of adaptive immunity in prokaryotic organisms

CRISPR-Cas9 enables sequence specific editing

- CRISPR-Cas9 recognizes, binds and cuts DNA complementary to CRISPR sequence
- Cas9 coupled with a single guide RNA (sgRNA) can be programmed to create a double stranded break in a specific piece of DNA

CRISPR-Cas9 enables sequence specific editing

- sgRNA consists of:
 - \circ Palindromic sequence (scaffold) \Box Interacts with Cas9
 - \circ Template spacer sequence (crRNA) \Box Customizable to target
- Cas9 requires a protospacer adjacent motif (PAM) site located 3' of crRNA
 - Cas9 recognizes 5'-NGG-3' PAM sites

CRISPR-Cas9 dominates the patent landscape for gene editing

 In 2021 the US Patent and Trademark Office had around 6000 CRISPR patent applications

 In 2020, 17% of CRISPR patents were related to plant modification and 13% were related to animal modification

Who owns CRISPR-Cas9?

Two teams of researchers developed CRISPR-Cas9 around the same time

- → Dr. Jennifer Doudna and Dr. Emmanuelle Charpentier (UC Berkeley)
 - Patent covers the use of CRISPR-Cas9 in any living cell

- → Dr. Feng Zhang (Broad institute)
 - Patent covers the use of CRISPR-Cas9 in eukaryotic cells

Who got there first?

- Both groups filed their applications months apart in 2012
- UC Berkeley owns the patents in Europe
 - The Broad institute patents were invalidated due to technical issues
- The Broad institute owns the patents in the US
- Ownership of CRISPR-Cas9 has not yet been established in Canada
 - Both groups have filed patents with the Canadian Patent Office

Patent landscape of CRISPR-Cas9 makes it expensive to use

- The original patent dispute between UC Berkley and the Broad Institute from 2012 is still ongoing
- Over 11,000 patent claims have been filed
- Licencing fees to use CRISPR-Cas9 commercially range from \$10,000 to \$1,000,000

Companies in 2021 Founded on CRISPR-Cas9 Patents From the Original IP Dispute				
Jennifer Doudna University of California, Berkeley	Feng Zhang MIT-Harvard Broad Institute	Emmanuelle Charpentier		
Caribou Biosciences	Sherlock Biosciences	CRISPR Therapeutics		
Mammoth Biosciences	Arbor Biotechnologies	ERS Genomics		
Intellia Therapeutics	Editas Medicine*			
Scribe Therapeutics	Beam Therapeutics			
* Jennifer Doudna was an original co-founder of Editas but is no longer involved after a reported falling out with Zhang.				

Patent landscape of CRISPR-Cas9 for plants and

agriculture

- There are often royalties associated with products developed with CRISPR-Cas9
- Depending on the specific use of Cas9 multiple licences may be necessary for a simple edit in a plant (Kock 2021)

Institution/ Patent holder	Surrogate company	Licensee	Field of application	Type of license*
Broad Institute, Harvard University & MIT (F. Zhang)	_	Bayer-Monsanto ¹²	Agricultural applications (seed development)	
		BASF ¹³	Agricultural applications	
		Corteva Agriscience (DuPont Pioneer) ¹⁴	Agricultural applications	Non-exclusive
		Syngenta ¹⁵	Agricultural applications	
	Pairwise ¹⁶	_	Plant-based applications (fruits and vegetables)	
		Bayer-Monsanto ¹⁷	Agricultural applications (in corn, soybean, cotton, wheat and canola)	Exclusive
University of California, Berkeley (J. Doudna)	Caribou Biosciences	Corteva Agriscience (DuPont Pioneer) ¹⁸	Agricultural applications (major row crops)	Exclusive
			Other agricultural and industrial applications	Non-exclusive
		Genus ¹⁹	Livestock	Exclusive
		Regional Fish Institute ²⁰	Non-mammalian marine animals for agricultural purposes	Non-exclusive Asia Pacific
		TreeCo ²¹	Trees	Exclusive
University of Vienna (E. Charpentier)	ERS Genomics	Evolva ²¹	Food products (yeast and fungal engineering)	Non-exclusive
		Corteva Agriscience (DuPont Pioneer) ²³	All agricultural uses and applications in plants	Exclusive

https://cban.ca/wp-content/uploads/Patents-on-Genome-Editing-cban-March-2022.pdf

MAD7 is a royalty-free endonuclease

- Engineered and released by Inscripta® in 2017
- Modified Cas12a endonuclease originating from the bacteria *Eubacterium rectale*
- Several improvements made to increase efficiency and decrease off-target editing

- Multiple patent claims
- Royalties
- Expensive licencing fees
- Total sgRNA length = 100bp

Cas9

- PAM site = 5'-NGG-3'
- Targets restricted to coding regions

• Clear ownership

MAD7

- Royalty-free
- Reasonable licencing fees
- Total sgRNA length = 43bp
- PAM site = 5'-YTTV-3'
- More targets available in noncoding regions

Cas9	MAD7
Creates blunt ends on cut site	 Creates 4bp overhangs on
 Cuts 3-5 base pairs upstream 	cut site
of PAM site	Variable cut site
 Cuts within auide sequence 	 Cuts outside of guide
5	sequence
sgRNA	sgRNA Y T T V
A PAM	PAM 🔺
cut site	cut site

Conclusion

• MAD7 PAM site allows for greater targeting power

• Increased efficiency and decreased off-targeting

• MAD7 is a cheaper option to increase access to gene editing compared to Cas9