Addressing concerns for Alberta's agricultural productivity

Wei-yuan Chen, Rajveer Singh, Jonas Lafave, Chaithra Nagaraju, Mariana Priotto de Macedo, Prakriti Sharma

In completion of PLNT 670

Why should we be concerned?

• White headache

(https://www.producer.com/2019/10/white-headache/)

- "We just didn't get enough sun and heat to get the crops dried down."
- "Seventeen (percent moisture) is the new dry for wheat in our area. I don't think there's been a bit of dry wheat or barley — or anything for that matter — that's come off dry so far."

• The Sprout: Snowmageddon leaves \$3 billion of Alberta crop in fields

(https://ipolitics.ca/2018/10/12/the-sprout-snowmageddo n-leaves-3-billion-of-alberta-crop-in-fields/)

• "Last night, one Alberta county declared a state of agricultural disaster. "

			% Coml	oined		
	South	Central	N East	N West	Peace	Alberta
Spring Wheat*	97.5%	92.0%	90.0%	95.5%	65.3%	89.8%
Durum Wheat	99.3%	99. <mark>6%</mark>				99.3%
Winter Wheat	100%	100%	100%			100%
Barley*	98.6%	94.5%	92.3%	93.6%	56.1%	93.1%
Oats*	97.5%	92.3%	82.9%	93.7%	63.8%	85.3%
Fall Rye	100%	100%	100%			100%
Triticale	100%	99.8%				99.8%
Mixed Grain	99.0%	95.9%				96.0%
Mustard	98.9%	100%				99.3%
Canola*	95.3%	91.0%	81.7%	91.6%	66.4%	84.5%
Dry Peas*	100%	96.1%	98.7%	99.5%	88.2%	96.7%
Lentils	100%	100%				100%
Chickpeas	100%	100%				100%
Flax	99.1%	73.8%	99.0%			92.7%
Potatoes	88.7%	100%		98.0%		89.8%
All Crops this week	97.6%	92.9%	86.9%	93.1%	67.7%	89.6%
Major Crops* this week	97.5%	92.6%	87.1%	93.7%	68.0%	88.8%
All Crops Nov. 29, 2016	100%	93.2%	81.0%	82.4%	84.6%	89.7%

Table: Estimates of Harvest Progress as of December 3, 2019

And it's a recurring problem...

Source: AF/AFSC Crop Reporting Survey

Estimates of Crop Harvest Progress as of October 30, 2018

		80	% of Co	mbined		
	South	Central	N East	N West	Peace	Alberta
Spring Wheat *	94.3%	96.3%	98.3%	93.6%	96.2%	96.1%
Durum Wheat	94.6%	100.0%			1000	95.4%
Winter Wheat	99.8%	100.0%	100.0%			99.8%
Barley *	98.1%	95.1%	96.3%	88.6%	95.5%	95.6%
Oats *	94.8%	94.2%	96.2%	89.6%	95.2%	93.7%
Fall Rye	99.7%	100.0%	100.0%			99.9%
Canola *	91.8%	95.1%	93.6%	80.4%	92.8%	91.7%
Dry Peas *	99.6%	99.6%	99.8%	99.8%	93.8%	98.6%
Lentils	99.7%	100.0%				99.7%
Flax	96.2%	83.8%	100.0%			94.6%
Potatoes	99.0%	100.0%		100.0%		99.1%
All Crops	95.5%	95.9%	96.1%	87.2%	94.2%	94.7%
Major Crops	95.2%	95.8%	96.1%	87.2%	94.2%	94.5%
Last Week (Major Crops)	85.0%	75.3%	79.4%	65.6%	76.1%	77.7%
November 1, 2016 **	96.3%	70.0%	67.9%	55.2%	79.3%	76.0%

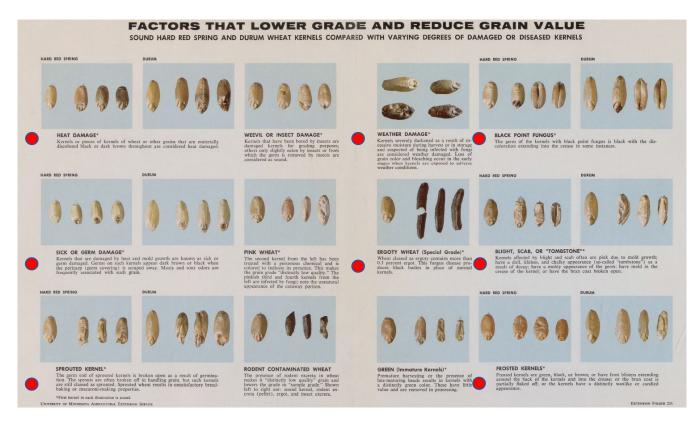
*: Major crops (reported for abbreviated survey), **: All crops

Source: AF/AFSC Crop Reporting Survey

Estimates of Crop Harvest Progress as of November 29, 2016

			Per cent of	Combined		
-	South	Central	N East	N West	Peace	Average
Spr. Wheat	100.0%	92.7%	85.4%	83.5%	85.3%	90.8%
Dur. Wheat	100.0%	100.0%				100.0%
Barley	100.0%	92.6%	72.8%	77.0%	81.0%	88.7%
Oats	100.0%	90.6%	66.5%	70.6%	79.3%	77.1%
W. Wheat	100.0%	100.0%	100.0%			100.0%
Canola	100.0%	92.8%	78.5%	83.5%	83.6%	86.8%
Dry Peas	100.0%	98.3%	99.8%	98.5%	93.0%	98.5%
Lentils	100.0%	100.0%				100.0%
Chick peas	100.0%	100.0%				100.0%
Mustard	100.0%	100.0%				100.0%
Flax	100.0%	91.1%	57.5%			92.9%
All crops	100.0%	93.2%	81.0%	82.4%	84.6%	89.7%

Source: AF/AFSC Crop Reporting Survey


Estimates of Crop Harvest Progress as of October 31, 2017

			Per cent of	Combine	d	
	South	Central	N East	N West	Peace	Average
Spring Wheat	100.0%	99.9%	98.3%	97.5%	97.3%	98.9%
Durum Wheat	100.0%	100.0%				100.0%
Barley	100.0%	99.8%	97.5%	96.8%	96.8%	98.9%
Oats	100.0%	99.7%	97.6%	98.7%	95.6%	98.2%
Winter Wheat	100.0%	100.0%	100.0%			100.0%
Canola	99.9%	99.3%	98.2%	96.9%	92.9%	97.5%
Dry Peas	100.0%	100.0%	100.0%	99.6%	100.0%	100.0%
Lentils	100.0%	100.0%	100.0%			100.0%
Chick peas	100.0%	100.0%				100.0%
Mustard	100.0%	100.0%				100.0%
Flax	99.8%	99.6%	99.5%			99.7%
All crops	100.0%	99.7%	98.2%	97.2%	95.3%	98.6%

Source: AF/AFSC Crop Reporting Survey

	Estima	tes of Regio	nal Crop Ha	rvest Progr	ess, Alberta	i.		
	Per Cent Combined							
	South	Central	NE	NW	Peace	Alberta		
			As of Noven	nber 3, 2015				
Spring Wheat	100.0%	99.7%	99.6%	100.0%	99.8%	99.8%		
Durum Wheat	100.0%	100.0%	0.0%	0.0%	0.0%	100.0%		
Barley	100.0%	99.7%	99.9%	99.9%	99.7%	99.8%		
Oats	100.0%	99.5%	99.8%	99.8%	99.8%	99.7%		
Canola	100.0%	99.5%	99.5%	98.1%	99.3%	99.3%		
Dry Peas	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%		
All Crops	100.0%	99.6%	99.6%	99.1%	99.5%	99.7%		
	As of October 20, 2015							
All Crops	99.7%	93.9%	94.2%	95.6%	97.7%	96.3%		
Source: AF/AI	FSC Crop	Reporting S	Survey					

What does the wet weather do to grain quality?

So what if the quality is a bit lower?

Example of how grain prices are affected by quality

4 grades for wheat – Grade 1, 2, 3 and 8 (feed grade)

Market prices given online are for grade 1 and 2 -> \$197.50/ton

Grade 3 is \$10 lower

Feed grade grain can be 30%-70% discounted depending on the cause!

Additional problems...

- Lodging
- Pre harvest sprouting
- Fungal contamination
- Hormone and signalling regulation
- Other agronomic practices
- Consumer acceptance

Our recommendations:

- Short-term:
 - **G** Agricultural Productivity Initiative Survey
 - **Improve farmer acceptance of Best Agronomic Practices**
 - **G** Strategies for improved consumer acceptance of GMO

Survey

Agricultural Productivity Initiative Survey

Personal information

÷‡•

Please tell us a bit about yourself...

Last name			
First name			
Mailing address			
Number	Street		
City	Province	Postal code	

General harvest information

	Fantasti	c			Very Unhappy
1. Weather conditions for taking it off				•	•
2. Grade when you (or 3 rd party) tested it	•	3			•
3. Grade you were given at the elevator	•	2		•	•
Did you send a sample to get an official grade?	Yes	No	Date		

Agricultural Productivity Initiative Survey Crop information

Crop type		Manufacturer		
Cultivar Name				
Planting date		Harvest date		
Final grade at sa	le	Yield (ton/acre)		
Fertilizer applica	ation			
Date Mixture		Manufacturer		
Pesticide applica				
Date	Target	Manufacturer		
Did you use any	of the following:			
Biocontrols		Yes	No	
Date	Brand	Manufacturer		
Plant growth reg	ulators (ethelphon, etc)			
Date	Brand	Manufacturer		

Improving Farmer Acceptance

Large Scale Commercial

Family Operated

Strategies to improve consumer acceptance on genome editing

 Invest in advertisements about genome editing and its applications.

Create profiles and pages on social media and share fact-checked information on a regular basis.

Conduct live

interviews and Q&A's with scientists to engage and interact with the general public.

Create a user-friendly website with interactive resources like quizzes and surveys.

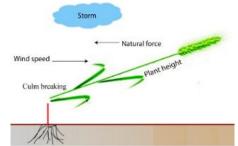
Conduct talks and workshops in schools and universities to raise awareness on food production challenges and how genome editing plays a role.

Participation in agricultural fairs. increasing awareness and acceptance of genome editing among farmers and conducting surveys to gather peoples opinions.

Our recommendations:

• Long-term:

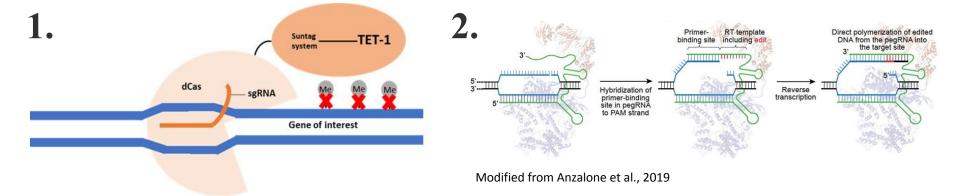
Agricultural Productivity Research Initiative


- **Q** Research Partnerships between research institutions and industry for:
 - Lodging resistance
 - Early germination resistance
 - Hormone treatments
 - Best agronomic practices

Improved regulatory framework for genome editing

Physical damage (lodging)

- Displacement of the plant from its original position.
- Difficult harvesting.
- Decreased grain size, number and weight.
- Susceptibility to fungal diseases.


- Management practices.
- Dwarf and semi-dwarf varieties.
- Plant growth regulators.

Strategies for improving cellulose content and lodging resistance

1. Epigenome editing for overexpression of CesA genes in different species.

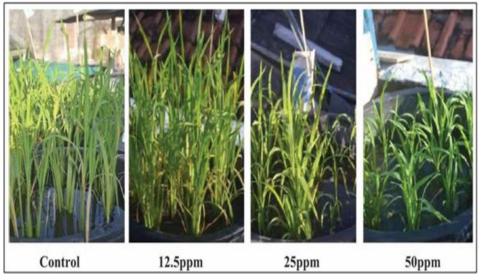
2. Prime editing for SNPs and mutations related to lodging resistance.

Agronomic solutions for lodging

Plant growth regulators (PGRs)

✓ Provide stem strength, shorten plant height, and prevent lodging (Xu et al 2017).

 \checkmark E.g. <u>Chlormequate chloride and</u> <u>Ethephon</u> decrease plant height along with enhanced grain production in wheat.

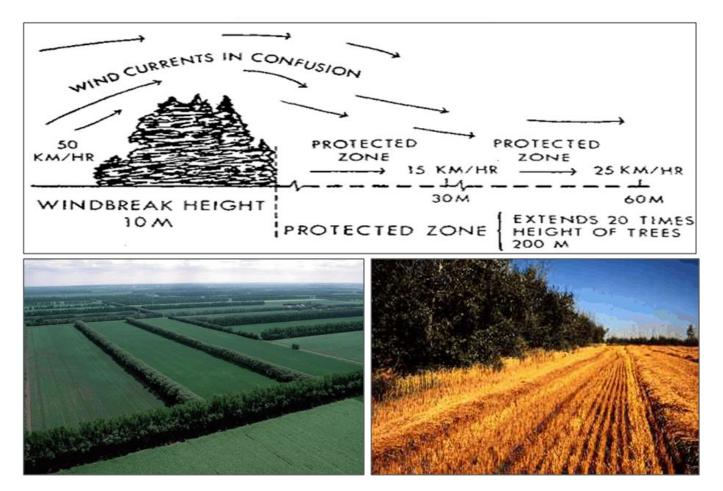

✓ <u>Paclobutrazol</u> enhanced lignin in the stem cell wall. Hua et al (2014) studied the effect of Paclobutrazol in canola.

Intercropping and mixed cropping

✓ Intercropping can provide better lodging resistance (Assefa and Ledin 2001).

✓ Cai et al (2019) reported mixed cropping of two wheat cultivars, 'Shannong8355' (lodging-resistant) and 'Shannong15' (SN15, lodging-susceptible)

✓ In Alberta, pea-canola (Peaola).



Effect of Paclobutrazol on rice stalk height

Pea-Canola intercrop (Peaola)

Wind shelters/windbreaks

Frost management

Weather monitoring	Agronomical solutions
Frost forecasting	Cold air drainage
Weather maps site wise	Nutrition management
	Soil management
	Irrigation

Dormancy and early germination a.k.a... Pre-Harvest Sprouting

• grains and oilseeds

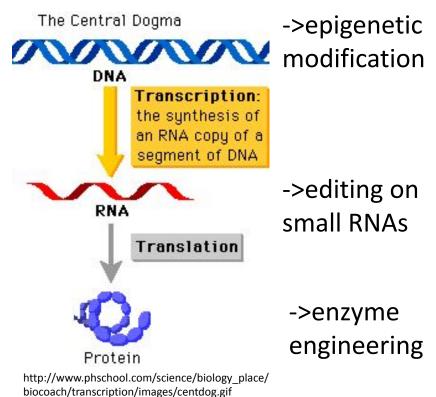
canola

https://www.canolawatch.org/2019/09/18/ pre-harvest-scouting-things-to-look-for-this-we ek/

lack of dormancy

wheat

https://grdc.com.au/resources-and-publications/groundcover/ groundcover-133-march-april-2018/sprouting-grain-puts-a-dampener-on-qual ity



Née, G., et al. (2017). https://ars.els-cdn.com/content/image/1-s2.0-S1369526616301339-gr1.jpg

Potential Solutions for PHS

Genetic modification
 -which category of "genes"?
 <u>e.g. phytohormones</u>

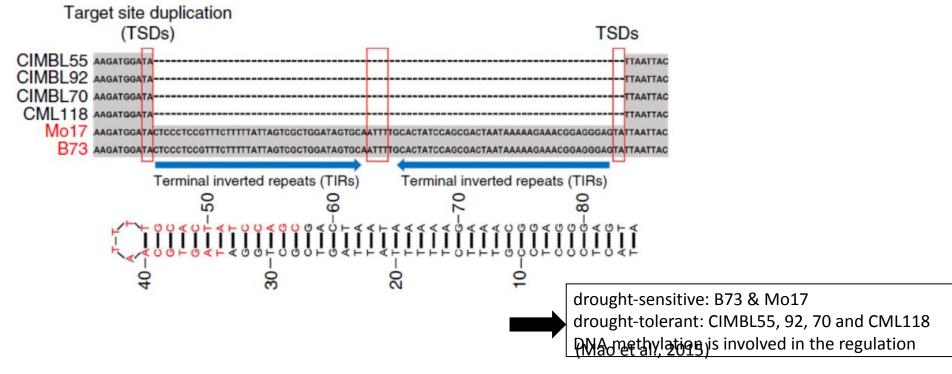
-which "level"

Potential Solutions: genetic modification a) miR156 (small RNA) (rice)

miR156 knockdown reduce germination

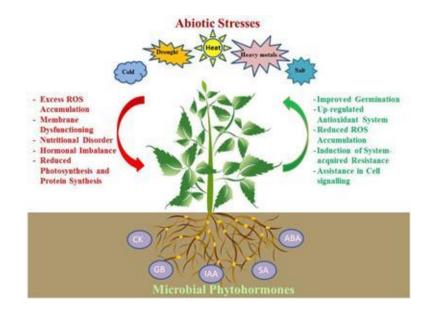
(Miao et al., 2019)

Annong0711	TGACCTGTAC	ATGCATGATC	CATGCACGCA	TCAGCGATCG	ATACGTATGC
Henong825	TGACCTGTAC	ATGCATGATC	CATGCACGCA	TCAGCGATCG	ATACGTATGC
Annong0711	GTAGGCCGCA	TGCACGCATG	GCGCCAAGGA	GGGTAGCCCA	AGT CCCAACC
Henong825	GTAGGCTGCA	TGCACGCATG			
		Re	verse Primer	De	eletion
Annong0711	CCCGTGACAA	AACCCTCAGT	TAATAATCCG	CCGCGCTAGC	CACCTGCTTA
Henong825	GTGACAA	AACCCTCAGT	TAATAATCCG	CCGCGCTAGC	CACCTGCTTA
Henong825	GTGACAA	AACCCTCAGT	TAATAATCCG	CCGCGCTAGC	CACCTGCTTA
Henong825 Annong0711				CCGCGCTAGC TCATTTGTAC	
0	GCGTAAGCCA	TATATACACC	CAGCCATGCG		AGGTCGTCGT
Annong0711	GCGTAAGCCA	TATATACACC	CAGCCATGCG	TCATTTGTAC	AGGTCGTCGT
Annong0711	GCGTAAGCCA GCGTAAGCCA	TATATACACC	CAGCCATGCG CAGCCATGCG	TCATTTGTAC	AGGTCGTCGT AGGTCGTCGT

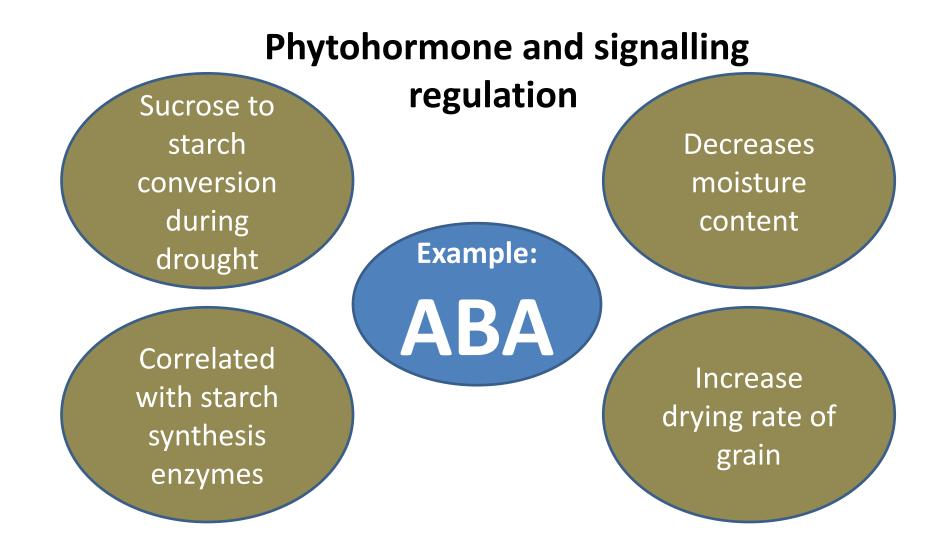

5

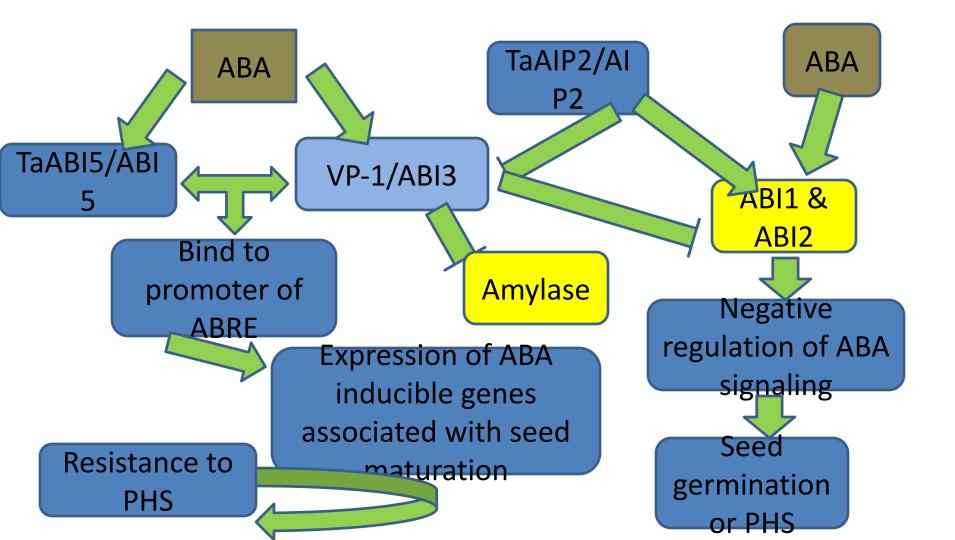
b) promoter(wheat)

Annong: PHS resistant Henong: PHS susceptible InDel changes the PHS trait


Potential Solutions: genetic modification

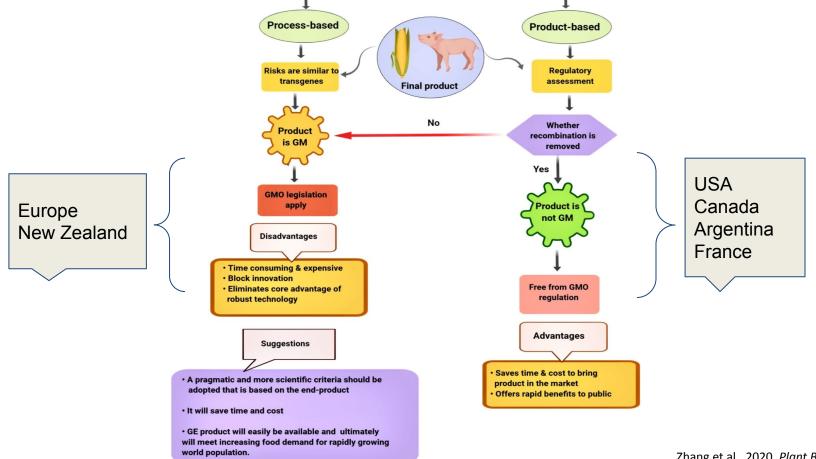
c) TE in promoter (maize)




Potential Solutions for PHS

- 2) Bio-controls
 - -use bacteria to help plants!
 - CRISPR could apply on bacteria
 - The bio-control could benefit other problems
 - It may be faster than developing a new crops

Egamberdieva, D. et al., (2017) https://www.frontiersin.org/files/Articles/2782 55/fmicb-08-02104-HTML/image_m/fmicb-0 8-02104-g001.jpg



Genes	Expression	ABA sensitivity	Refrences
TaVP-1A from PHS resistant	Upregulation	Increase ABA sensitivity irrespective of concentration	Feng et al., 2017,
varieties of wheat (T.		of ABA and therefore expression of ABA inducible	Chang et al 2011
boeoticum)		gene expression	
TaVP-1B from PHS resistant	upregulation	Increase ABA sensitivity irrespective of concentration	Chang et al 2010,
varieties of wheat (<i>T. durum</i>)		of ABA and therefore expression of ABA inducible	Feng et al., 2017
		gene expression	
TaAIP2	Downregulation	Increase ABA sensitivity and provide resistance to	
		PHS	
	Upregulation increase expression of	Decrease ABA sensitivity and ABA responsive genes	Gao et al., 2014,
	ABI21 and ABI2 and decrease	and form crop susceptible to PHS and increase	Zhang et al., 2005
	expression of VP-1/ ABI3 by degrading	germination rate	
	VP-1/ABI3		
ABI5 in Arabidopsis and	Interact with VP-1	Increase expression of ABA inducible genes by	Utsugi et al.,
TaABI5 in Wheat		binding to Em promoter of ABRE	2020
ABI1 and ABI2	Negative regulators of ABA signaling,	In expression increase ABA sensitivity decreases	Suzuki et al.,
	suppressed by VP-1		2003
	Expression increase in the presence of		
	ABA		ļ
ThVp-1d from wheat grass	Can be use to form transgenic wheat	Give PHS resistance	Kocheshkova et
(Thinopyrum sp.)	with ThVP-1 gene		al., 2017

Reframing of ethical guidelines and Regulatory policies

Regulatory overview of genome editing

Zhang et al., 2020, Plant Biotechnol. J.

Summary

-Short term processes:

-gather additional information to better assess problem
-alleviate and mitigate crop damage and value loss
-outreach to improve support for program

-Long term solution:

-not going to be a single solution to fix everything
-multiple research avenues maximise possibility of solution