

Genome Editing in Hazelnut: Challenges and Prospectives

ANSC 691 JUNE 23, 2021 JOHN STEELE

Presentation Map

Hazelnut

•Gene Editing

•Challenges

•Prospectives

•Summary

Vitamin A 1.8mcg	0.26	Selenium 0./mcg	0.%
Vitamin E 4.26mg	30%	Manganese 1.75mg	80%
Vitamin B ₄ 0.16mg	10%	Zinc 0.69mg	6%
Phosphorus 82mg	6%	Copper 0.49mg	25%
*The % Daily Value (DV) tel food contributes to a daily	lls you how n diet. 2,000	nuch a nutrient in a serving calories a day is used for g	of general

food contributes to a daily diet. 2,000 calories a day is used for general nutrition advice. Data from the USDA National Nutrient Database for Standard Reference, Release 28, Full Report, 2015. "Hazehnuts are unsalted and unroasted.

HazeInut Around the World

Source: Bassil et al. (2013)

Hazelnut: An Expanding Crop

Hazelnut in North America: a challenge

Eastern Filbert Blight

Hazelnut Breeding: A slow process

• 17-18 years from cross to release of cultivar

PHazelnut

There's GOT to be a better way!

Source: Bassil et al. (2013)

What is Gene Editing?

•Gene editing

- Targeted alteration of a genetic sequence
- Genetic modification ≠ Gene editing
 Random insertion of foreign genetic material

CRISPR: A powerful tool

•CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats

Technical Requirements for CRISPR

Two things are needed to do CRISPR in a species:

- 1. A sequenced genome
- \checkmark
- 2. CRISPR Component Delivery
 - 1. DNA-Based
 - 2. DNA-Free

the plant journal

The Plant Journal (2020)

doi: 10.1111/tpj.15099

A chromosome-scale genome assembly of European hazel (*Corylus avellana* L.) reveals targets for crop improvement ()

Stuart J. Lucas^{1,*} (D, Kadriye Kahraman^{1,2} (D, Bihter Avşar^{1,2} (D, Richard J.A. Buggs^{3,4} and Ipek Bilge^{1,2} (D)

Gene Editing

CRISPR Component Delivery: DNA-Based

Integration of CRISPR Components into Plant Genome

Transient Expression of CRISPR DNA-Plasmid

CRISPR Component Delivery: DNA-Free

Direct Delivery of CRISPR Components

Regulation

•Regulation should be avoided for niche crops (Bullock et al., 2021)

•Processed based regulation

• Europe

•Any engineering by humans is regulated (Entine et al., 2021)

•Result based regulation

- North America
- •Regulation can be avoided

GE Hazelnut Incompatible with Europe

United States Department of Agriculture

- •A single deletion of any size/random insertion is made; OR
- A single base pair is changed; OR
- A single piece of DNA, from a sexually compatible organism, is inserted (Entine et al., 2021)

• The product is not significantly different from what is already on the market (Entine et al., 2021)

Food and Drug Administration

•The introduced trait already exists in the environment (Entine et al., 2021)

Avoiding Regulation in Canada

- Current Regulation (Entine et al., 2021)
 - Case-by-case determination
 - Irrespective of technology
- Review of 'safe' gene-editing practices underway
 - Expected update: 2021

No Foreign DNA: They Key to Avoiding Regulation

Technical Challenges: DNA-Free CRISPR

Hazelnut *cannot* be regenerated from single cells in-vitro

Prospectives: GE Hazelnut & North America

- •North America produces ~3.5% of the global hazelnut supply (Tridge, 2021)
- •North America consumes ~ 7% of total global imports (Tridge, 2021)
- •GE HazeInut can support the expanding North American Market

A Road to Gene Editing in HazeInut

Regulation of Gene Edited Hazelnut Can be Avoided

Regeneration of Hazelnut Protoplasts: Conceivable

Theor. Appl. Genet. 62, 171-176 (1982)

Plant Regeneration from *Citrus* Protoplasts: Variability in Methodological Requirements Among Cultivars and Species*

A. Vardi and P. Spiegel-Roy

Plant Cell Reports (1998) 17: 201-205

© Springer-Verlag 1998

J. Qiao · H. Kuroda · T. Hayashi · F. Sakai

Efficient plantlet regeneration from protoplasts isolated from suspension cultures of poplar (*Populus alba* L.)

Summary: More Groundwork Needed

- •HazeInut is an expanding crop in North America
- •HazeInut breeding takes decades to produce elite varieties with novel traits
- •Gene editing is an economically feasible tool to facilitate hazelnut breeding
- •Gene edited HazeInut must escape regulation
- •Gene edited Hazelnut can escape regulation in North America
- •DNA Free CRISPR should be used
- •Regeneration of hazeInut from protoplasts/embryos must be established

Thanks for Listening!

References

Bassil, N.V., Boccacci, P., Botta, R., *et al.* (2013) Nuclear and Chloroplast Microsatellite Markers to Assess Genetic Diversity and Evolution in Hazelnut Species, Hybrids and Cultivars. Genetic Resourse and Crop Evolution 60:543–568.

Bullock, D.W., Wilson, W.W., Neadeau, J. (2021). Gene Editing Versus Genetic Modification in the Research and Development of New Crop Traits: An Economic Comparison. *American Journal of Agricultural Economics*. <u>https://doi.org/10.1111/ajae.12201</u>

Entine, J., Felipe, M.S.S., Groenewald, JH. *et al.* (2021).Regulatory approaches for genome edited agricultural plants in select countries and jurisdictions around the world. *Transgenic Research* <u>https://doi.org/10.1007/s11248-021-00257-8</u>

Lucas SJ, Kahraman K, Avşar B, Buggs RJA, Bilge I. (2021) A chromosome-scale genome assembly of European hazel (Corylus avellana L.) reveals targets for crop improvement. *the Plant Journal* 105(5):1413-1430. doi: 10.1111/tpj.15099.

Qiao, J., Kuroda, H., Hayashi, T. *et al.* (1998). Efficient plantlet regeneration from protoplasts isolated from suspension cultures of poplar (Populus alba L.). *Plant Cell Reports* 17, 201–205. <u>https://doi.org/10.1007/s002990050378</u>

Tridge. (2021, July). *Hazelnut suppliers, wholesale prices and global market information*. https://www.tridge.com/intelligences/hazelnut-in-shell

Vardi, A., Spiegel-Roy, P. & Galun, E. (1982). Plant regeneration from *Citrus* protoplasts: Variability in methodological requirements among cultivars and species. *Theoretical and Applied Genetics* 62, 171–176. <u>https://doi.org/10.1007/BF00293354</u>